6.1 Add and Subtract Polynomials

Learning Objectives

By the end of this section, you will be able to:

  • Identify polynomials, monomials, binomials, and trinomials
  • Determine the degree of polynomials
  • Add and subtract monomials
  • Add and subtract polynomials
  • Evaluate a polynomial for a given value

Identify Polynomials, Monomials, Binomials and Trinomials

You have learned that a term is a constant or the product of a constant and one or more variables. When it is of the form axm, where a is a constant and m is a whole number, it is called a monomial. Some examples of monomial are 8,−2x2,4y3,and11z7.

A monomial, or two or more monomials combined by addition or subtraction, is a polynomial. Some polynomials have special names, based on the number of terms. A monomial is a polynomial with exactly one term. A binomial has exactly two terms, and a trinomial has exactly three terms. There are no special names for polynomials with more than three terms.

Polynomials

polynomial—A monomial, or two or more monomials combined by addition or subtraction, is a polynomial.

  • monomial—A polynomial with exactly one term is called a monomial.
  • binomial—A polynomial with exactly two terms is called a binomial.
  • trinomial—A polynomial with exactly three terms is called a trinomial.

Here are some examples of polynomials.

Notice that every monomial, binomial, and trinomial is also a polynomial. They are just special members of the “family” of polynomials and so they have special names. We use the words monomial, binomial, and trinomial when referring to these special polynomials and just call all the rest polynomials.

Determine the Degree of Polynomials

The degree of a polynomial and the degree of its terms are determined by the exponents of the variable.

A monomial that has no variable, just a constant, is a special case. The degree of a constant is 0—it has no variable.

Degree of a Polynomial

The degree of a term is the sum of the exponents of its variables.

The degree of a constant is 0.

The degree of a polynomial is the highest degree of all its terms.

Let’s see how this works by looking at several polynomials. We’ll take it step by step, starting with monomials, and then progressing to polynomials with more terms.

This table has 11 rows and 5 columns. The first column is a header column, and it names each row. The first row is named “Monomial,” and each cell in this row contains a different monomial. The second row is named “Degree,” and each cell in this row contains the degree of the monomial above it. The degree of 14 is 0, the degree of 8y squared is 2, the degree of negative 9x cubed y to the fifth power is 8, and the degree of negative 13a is 1. The third row is named “Binomial,” and each cell in this row contains a different binomial. The fourth row is named “Degree of each term,” and each cell contains the degrees of the two terms in the binomial above it. The fifth row is named “Degree of polynomial,” and each cell contains the degree of the binomial as a whole.” The degrees of the terms in a plus 7 are 0 and 1, and the degree of the whole binomial is 1. The degrees of the terms in 4b squared minus 5b are 2 and 1, and the degree of the whole binomial is 2. The degrees of the terms in x squared y squared minus 16 are 4 and 0, and the degree of the whole binomial is 4. The degrees of the terms in 3n cubed minus 9n squared are 3 and 2, and the degree of the whole binomial is 3. The sixth row is named “Trinomial,” and each cell in this row contains a different trinomial. The seventh row is named “Degree of each term,” and each cell contains the degrees of the three terms in the trinomial above it. The eighth row is named “Degree of polynomial,” and each cell contains the degree of the trinomial as a whole. The degrees of the terms in x squared minus 7x plus 12 are 2, 1, and 0, and the degree of the whole trinomial is 2. The degrees of the terms in 9a squared plus 6ab plus b squared are 2, 2, and 2, and the degree of the trinomial as a whole is 2. The degrees of the terms in 6m to the fourth power minus m cubed n squared plus 8mn to the fifth power are 4, 5, and 6, and the degree of the whole trinomial is 6. The degrees of the terms in z to the fourth power plus 3z squared minus 1 are 4, 2, and 0, and the degree of the whole trinomial is 4. The ninth row is named “Polynomial,” and each cell contains a different polynomial. The tenth row is named “Degree of each term,” and the eleventh row is named “Degree of polynomial.” The degrees of the terms in b plus 1 are 1 and 0, and the degree of the whole polynomial is 1. The degrees of the terms in 4y squared minus 7y plus 2 are 2, 1, and 0, and the degree of the whole polynomial is 2. The degrees of the terms in 4x to the fourth power plus x cubed plus 8x squared minus 9x plus 1 are 4, 3, 2, 1, and 0, and the degree of the whole polynomial is 4.

A polynomial is in standard form when the terms of a polynomial are written in descending order of degrees. Get in the habit of writing the term with the highest degree first.

Add and Subtract Monomials

You have learned how to simplify expressions by combining like terms. Remember, like terms must have the same variables with the same exponent. Since monomials are terms, adding and subtracting monomials is the same as combining like terms. If the monomials are like terms, we just combine them by adding or subtracting the coefficient.

Remember that like terms must have the same variables with the same exponents.

Add and Subtract Polynomials

We can think of adding and subtracting polynomials as just adding and subtracting a series of monomials. Look for the like terms—those with the same variables and the same exponent. The Commutative Property allows us to rearrange the terms to put like terms together.

Evaluate a Polynomial for a Given Value

We have already learned how to evaluate expressions. Since polynomials are expressions, we’ll follow the same procedures to evaluate a polynomial. We will substitute the given value for the variable and then simplify using the order of operations.

Media

Access these online resources for additional instruction and practice with adding and subtracting polynomials.

  • Add and Subtract Polynomials 1
  • Add and Subtract Polynomials 2
  • Add and Subtract Polynomial 3
  • Add and Subtract Polynomial 4

Section 6.1 Exercises

Practice Makes Perfect

Identify Polynomials, Monomials, Binomials, and Trinomials

In the following exercises, determine if each of the following polynomials is a monomial, binomial, trinomial, or other polynomial.

Determine the Degree of Polynomials

In the following exercises, determine the degree of each polynomial.

Add and Subtract Monomials

In the following exercises, add or subtract the monomials.

Add and Subtract Polynomials

In the following exercises, add or subtract the polynomials.

Evaluate a Polynomial for a Given Value

In the following exercises, evaluate each polynomial for the given value.

Everyday Math

Writing Exercises

Self Check

ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.This is a table that has six rows and four columns. In the first row, which is a header row, the cells read from left to right “I can…,” “Confidently,” “With some help,” and “No-I don’t get it!” The first column below “I can…” reads “identify polynomials, monomials, binomials, and trinomials,” “determine the degree of polynomials,” “add and subtract monomials,” “add and subtract polynomials,” and “evaluate a polynomial for a given value.” The rest of the cells are blank.

ⓑ If most of your checks were:

…confidently. Congratulations! You have achieved the objectives in this section. Reflect on the study skills you used so that you can continue to use them. What did you do to become confident of your ability to do these things? Be specific.

…with some help. This must be addressed quickly because topics you do not master become potholes in your road to success. In math every topic builds upon previous work. It is important to make sure you have a strong foundation before you move on. Whom can you ask for help? Your fellow classmates and instructor are good resources. Is there a place on campus where math tutors are available? Can your study skills be improved?

…no – I don’t get it! This is a warning sign and you must not ignore it. You should get help right away or you will quickly be overwhelmed. See your instructor as soon as you can to discuss your situation. Together you can come up with a plan to get you the help you need.