2.3 Solve Equations with Variables and Constants on Both Sides

Learning Objectives

By the end of this section, you will be able to:

  • Solve an equation with constants on both sides
  • Solve an equation with variables on both sides
  • Solve an equation with variables and constants on both sides

Solution

This figure is a table that has three columns and four rows. The first column is a header column, and it contains the names and numbers of each step. The second column contains further written instructions. The third column contains math. On the top row of the table, the first cell on the left reads: “Step 1. Choose which side will the “variable” side—the other side will be the “constant” side.” The text in the second cell reads: “The variable terms are 7 x and 6 x. Since 7 is greater than 6, we will make the left side the “x” side and so the right side will be the “constant” side.” The third cell contains the equation 7 x plus 5 equals 6 x plus 2, and the left side of the equation is labeled “variable” written in red, and the right side of the equation is labeled “constant” written in red.
In the second row of the table, the first cell says: “Step 2. Collect the variable terms to the “variable” side of the equation, using the addition or subtraction property of equality.” In the second cell, the instructions say: “ With the right side as the “constant” side, the 6x is out of place, so subtract 6x from both sides. Combine like terms. Now the variable is only on the left side!” The third cell contains the original equation with 6x subtracted from both sides: 7 x minus 6 x plus 5 equals 6 x minus 6 x plus 2, with “minus 6 x” written in red on both sides. Below this is the same equation with like terms combined: x plus 5 equals 2.
In the third row of the table, the first cell says: “Step 3. Collect all the constants to the other side of the equation, using the addition or subtraction property of equality.” In the second cell, the instructions say: “The right side is the “constant” side, so the 5 is out of place. Subtract 5 from both sides. Simplify.” The third cell contains the equation x plus 5 minus 5 equals 2 minus 5, with “minus 5” written in red on both sides. Below this is the answer to the equation: x equals negative 3.
In the fourth row of the table, the first cell says: “Step 4. Make the coefficient of the variable equal 1, using the Multiplication or Division Property of Equality.” In the second cell, the instructions say: “The coefficient of x is one. The equation is solved.” The third cell is blank.
In the fifth row of the table, the first cell says: “Step 5. Check.” The instructions in the second cell say: “Check. Let x equal negative 3. Simplify. Add.” In the third cell is the original equation again: 7 x plus 5 equals 6x plus 2. Below this is the same equation with negative 3 substituted in for x: 7 times negative 3 (in paretheses) plus 5 might equal 6 times negative 3 (in parentheses) plus 2, with the “times negative 3” written in red on both sides of the equation. Below this is the equation negative 21 plus 5 might equal negative 18 plus 2. On the last line is the equation negative 16 equals negative 16, with a check mark next to it.

Self Check

ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.This is a table that has four rows and four columns. In the first row, which is a header row, the cells read from left to right: “I can...,” “Confidently,” “With some help,” and “No-I don’t get it!” The first column below “I can...” reads: “solve an equation with constants on both sides,” “solve an equation with variables on both sides,” and “solve an equation with variables and constants on both sides. ” The rest of the cells are blank.

ⓑ What does this checklist tell you about your mastery of this section? What steps will you take to improve?